Skip to main content
Rural Health Information Hub

Using Data to Identify Priorities and Health Inequities

Using data to understand the scope of health inequities can help identify which members of the community are most affected by inequities. Rural communities can use data to compare selected measures between populations or among geographic areas in the community and identify where differences are greatest. When using data to identify priorities, rural communities should understand the importance of Assessing the Historical and Political Context and Engaging Community Members Affected by Health Inequities.

Rural communities can assess a range of potential quantitative data to understand key differences among populations and areas of greatest needs:

Rural communities can also collect information directly from the community and those who work with people who experience inequities. Potential qualitative data sources include:

  • Community members who experience inequities
  • Lay health workers and social services providers with deep ties to communities that experience inequities
  • Community groups and organizations that serve people who experience inequities
  • A range of agencies and departments that address the social determinants of health affecting communities that experience inequities

Rural communities may consider how other rural local health departments and collaboratives have used data to identify the fundamental causes of health inequities. For example, the Minnesota Department of Health requires grantees of its Statewide Health Improvement Partnership to complete a Health Equity Data Analysis (HEDA). The HEDA process includes the following steps:

  • Connection and later (Re)connection, which involves expanding understanding of the social determinants of health and then exploring how health outcomes are linked to those social conditions. In their HEDA, rural Chisago County examined the connection between employment, hours worked, education, and prevalence of type 2 diabetes in the communities.
  • Population, or identifying populations in the community that experience health inequities. Rural Rice County Public Health conducted a HEDA based on their WIC clinic data that showed Latino children were disproportionately experiencing pediatric obesity. The Health Equity Plan also includes a commitment to “regularly collect, analyze, and report data related to health equity and/or social determinants of health.”
  • Differences, or finding differences in outcomes or behaviors among groups in the community. Southwest Health and Human Services conducted a HEDA to explore the state and causes of rural poverty in rural Lincoln County. The HEDA identified differences in smoking rates, obese weight status, hypertension, and high cholesterol between Lincoln County residents and those of the tri-county region.
  • Causes and Conditions, or identifying systemic roots for differences in health outcomes. While every step of the HEDA process offers opportunities for members of the communities to help identify the contributors of health outcomes, qualitative data collection is central to identifying causes and conditions. As part of their HEDA, rural Meeker McLeod Sibley (MMS) Healthy Communities conducted interviews with participants of the Women, Infants, and Children (WIC) program and providers who work with WIC. Key causes and conditions included chronic stress, lack of quality housing, lack of employment opportunities, and lack of inclusion in decision-making processes.

Examples of Rural Communities Using Data to Identify Priorities

  • The Health Equity and Access in Rural Regions (HEARR) project is using community and population mapping to identify opportunities for community-led demonstration projects.
  • The Southeast Arizona Area Health Education Center (SEAHEC) Healthy Farms Program began as a farmworker health initiative in the Winchester Heights community or “colonia” of rural Cochise County, AZ. The impetus for the initiative was a community health needs assessment that revealed deep needs of community members. The assessment shows that most residents of Winchester Heights were Latino farmworkers who faced numerous structural barriers in accessing healthcare and improving the conditions in which they worked and lived.
  • A core aspect of the American Indian Cancer Foundation's (AICAF) work involves assisting tribes with accessing reliable cancer data. AICAF works with federal and state agencies to raise awareness about the misclassification and misrepresentation of data on American Indian/Alaska Native communities.
  • The Hogg Foundation's Collaborative Approaches to Well-Being in Rural Communities (WRC) initiative is promoting place-based and community-driven solutions to mental health in rural Texas. During the planning phase of WRC, community collaboratives were funded to complete baseline assessments and build capacity in evaluation and systems change.

Implementation Considerations

The County Health Rankings & Roadmaps describes data disaggregation as a key consideration for illuminating health inequities. Data disaggregation can be particularly important in rural communities with small population sizes, where aggregation of data may mask differences in health outcomes among different groups of people. Where data disaggregation is not possible, rural communities can consider conducting additional data collection through traditional methods like surveys and interviews and less traditional approaches like participatory community mapping and Photovoice.

Examples of Clearinghouse Programs

Resources to Learn More

Health Equity: Data and Statistics
Provides links to datasets related to health equity.
Organization(s): University of California Berkeley Library

Improving Health Equity Through Data Collection AND Use: A Guide for Hospital Leaders
Describes best practices used by hospitals for collecting and utilizing patient race, ethnicity, and language data to identify health inequities, increase access to care, and improve health outcomes.
Organization(s): American Hospital Association (AHA), Health Research and Educational Trust
Date: 3/2011

Mapping Tools
Provides links to mapping resources and data to illustrate health disparities at the local level and improve community development and health outcomes across the U.S. Offers the Rural Data Portal providing data on the social, economic, and housing features of rural communities.
Organization(s): Build Healthy Places Network

Using Data to Reduce Disparities and Improve Quality
Presents healthcare organizations and stakeholders recommendations on using data to identify, prioritize, and reduce healthcare disparities. Discusses the value of multi-stakeholder collaboratives working together to increase the potential to reduce health inequities.
Author(s): DeMeester, R., Mahadevan, R., Cook, S, et al.
Organization(s): Advancing Health Equity
Date: 10/2020

Using Data to Reduce Health Disparities and Improve Health Equity
Offers guidance and examples for hospitals and health systems on applying data to address the systemic causes of health inequities.
Organization(s): American Hospital Association (AHA) Center for Health Innovation
Date: 3/2021